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Preface

The goal of this document is to provide a comprehensive guide to the course material of CHEG
302, as well as serve as a useful reference for reviewing the most important material. This goal is
both complex and contradictory, as these two use cases are often at odds with one another. For
example, consider the conceptual difference between the questions:

How does flash distillation work?
What is the operating line for a stripping column?

A resource for someone looking to reference an important question or be reminded of notational
nuances will be very different than a resource intended to teach a student key concepts. It will be
left as an exercise to the reader if I have achieved my goal.

One observation I have made in planning and preparing this document is just how little we
learned. I have spent weeks and weeks grappling with increasingly more difficult and complicated
topics, and yet, upon reflection, it’s as if we have barely covered anything. This is a paradox resolved
by depth. Consider a miner digging straight down, swinging their pick axe day and night for three
months, digging deeper and deeper against increasingly hard stone. Would it be fair to criticize
them for having dug a narrow hole?

Despite the lack of breadth, this is after all a 300-level course, we have traversed immense depth
with enormous effort. My hope is that this document can also capture the pride I feel, nearing the
end of this journey, tirelessly labouring until the end, infatigable et obstiné.

Oftentimes, in CHEG 302, I have referenced the sonnets of Joachim Du Bellay, in particular his
sonnet N°39, where he wishes he were anywhere but where he was, and laments his responsibilities.
He writes that he was born for the Muse, a pseudo-religious calling to the arts, but he must labour in
busywork. Typically le ménage is better understood as housework, or other menial labour, however,
in Engineering I feel have come to understand a new meaning of these words. It is the feeling of
ambition and creativity in the face of formulas and algorithms; it is the desperate plea, beneath an
impossible amount of work, to be anywhere else, doing anything else.

In this, is the inspiration for this document. I want this document to be professional, sleek,
functional... beautiful. I want this for myself, I want this for my Muse. All the hours of frustration,
in making this text and throughout this semester should be worthwhile. I would like, at the very
least, the satisfaction of purpose. Thus, I have made this for my Muse, and they love me just the
same.

This document will not have been easy to create, and has been constructed in the LATEX language
with the help of countless guides and online resources.

Je suis né pour la Muse, on me fait ménager

Joachim Du Bellay
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Chapter 1
Equilibrium and Two-Phase Systems

A Separation Process is a unit operation which increases the concentration of a single component.
All processes, both simple and complex, share the same driving force, equilibrium, as the system
will always trend from its current state towards the equilibrium state. Separation is, put simply,
clever exploitation of this natural trend towards equilibrium.

What is Equilibrium?

Up until the 1980’s, it was common for bars, restaurants, and even airplanes to have smoking
sections. The problem with this should be immediately apparent. Release toxic smoke in one corner
of a small enclosure, and soon enough the entire room will be saturated with smoke. Why does this
occur? What drives the smoke to diffuse evenly across the entire volume? Why don’t swimming
pools have a pissing section? The answer is equilibrium.

Definition. The equilibrium state of the system is the state in which there is net change in concen-
tration over time.

Systems are constantly in motion, diffusing from one state to another continuously and randomly.
The emergent behavior of this randomness is that the system will tend towards the equilibrium state.
Once at this state, the system state will remain constant unless an external factor changes the equi-
librium state. As a rule, a system at equilibrium will have uniform temperature and pressure.

As an example, imagine a tank comprised of two components in vapor-liquid equilibrium. We
will call these components A and B and we will refer to the liquid phases and vapour phases as x
and y respectively. Let xA be the fraction of A in the liquid phase, let yB be the fraction of B in
the vapour phase, and so forth. Since

xA + xB = 1

yA + yB = 1

it is conventional to only consider the fraction of component A since the fraction of component B
can be easily derived thereafter. Note that:

xA + yA ̸= 1

as the vapour and liquid fractions are not directly dependant on each other - that’s what equilibrium
is for! In this system, xA and yA are in equilibrium, in other words, that yA can be expressed as a
function of xA.
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Vapour-Liquid Equilibrium

The most studied case of equilibrium throughout this course is vapour-liquid equilibrium. This
is the equilibrium at play in the previous example: the equilibroum between the fraction of A in
the liquid phase xA and the fraction of A in the vapour phase yA. What drives a component to be
in the vapour or liquid phase?

Definition. Volatility is the property of a component which describes its capacity to turn into a
vapour. Components with lower boiling points can be considered more volatile.

By convention, in systems exploiting volatility, we call the more volatile component A. Differ-
ent components have different volatilities, and it is useful to compare the volatilities of different
components.

αAB =
PA/xA

PB/xB

≥ 1 (1.1)

We define αAB to be the relative volitility of A and B, where PA is the partial pressure of A
and xA is the mole fraction of A in the liquid phase.

For certain systems, we can assume that the inter-molecular forces within the liquid and vapor
can be ignored. We call this ideal vapour-liquid equilibrium. Assuming an ideal system greatly
simplifies what is necessary to model a separation, in particular, much can be derived from 1.1.

PA = yAP (1.2)

This is the equation for the partial pressure of A, where P represents the total pressure of the
system. Substituting equations 1.1 and 1.2 and simplifying, we get

αAB =
yA/xA

yB/xB

(1.3)

This can be rearranged as an equilibrium expression equation:

yA =
xAαAB

1 + (αAB − 1)xA
(1.4)

To analyse any separation process, it is necessary to have an equilibrium equation, and deriving
this is often the first step of a solution. 1.1 can be further exploited for ideal systems by combining
with Raoult’s Law:

yAP = xAP
∗
A(T ) (1.5)

where P is the total pressure of the system, and P ∗
A(T ) is the vapour pressure of component A.

Combining 1.5 and 1.1 we get

αAB ≈ P ∗
A(T )

P ∗
B(T )

(1.6)

Therefore, the relative volatility αAB can be approximated as the ratio of the vapor pressures
of the components. To solve a system involving ideal vapour-liquid equilibrium given xA, first use
the vapour pressures to approximate αAB using 1.6, then solve for yA using 1.4.

Gibbs Phase Rule and Two Phase Systems

All of the separations we will be studying in this class are two phase systems with two compo-
nents. This means that there are exactly two components interacting with each other at any given
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time, and these components are in no more than two phases, ie. liquid and vapour. Separations
processes with these conditions are called binary.

We know if we have enough information to solve a given problem by analysing the Degrees of
Freedom of a problem. Normally, this is understood as

#Equations−#Knowns = Degrees of Freedom

however there exists a special case called Gibbs Phase Rule which states

Degrees of Freedom = C − P + 2 (1.7)

where C is the number of components or chemical species within the system as P is the number of
phases within the system. Solving for our binary systems, we find that there are 2 Gibbs Degrees of
Freedom for a binary separation. Gibbs Degrees of Freedom describe how many intensive properties
are needed to define any given system.

Definition. An intensive property is a property of the system that does not depend on the size of
the system

Common examples of intensive properties are temperature, pressure, reflux ratio, and component
fractions. Other properties such as flow-rates are extensive properties, and are not accounted for
by Gibbs Degrees of Freedom.

Key Point. By Gibbs Phase Rule, a binary separation is defined by two intensive properties

Txy and x-y Plots

Equilibrium information comes in many forms. Often, it is defined by an equation, solved as
we have seen previously from vapor pressure information. However, the most reliable source of
equilibrium information is empirical data, which needs to be analysed graphically. Additionally, it
serves quite useful to graph equilibrium expressions in separation process analysis. There are two
main styles of graphical equilibrium information, Txy plots and x-y plots. Below is an example of
a Txy plot, where component A is ethanol, and component B is water.
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Figure 1.1: Txy Diagram for A and B
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In this example, the bubble line is represented by the blue line, and the dew line is represented
by the red line. This diagram represents equilibrium states across different temperatures, as every
pair of points at the same temperature represents an instance of vapour-liquid equilibrium. For
example, the above Txy plot highlights the equilibrium composition of xA ≈ 0.35 and yA ≈ 0.55
which occours at 90◦C. The line drawn between the two curves is called the tie line and this method
of analysis is called the lever rule.

Similarly, these different equilibrium states can be plotted against each other, rather than tem-
perature. This is a lossy process, you can generate an x-y plot from a Txy plot, but you cannot
generate a Txy plot from an x-y plot, however, x-y plots enable useful analysis techniques which
will be necessary to solve more complicated separation processes. Below is the same equilibrium
information as above expressed in an x-y plot.
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Figure 1.2: x-y Diagram for A and B

Note how the point (xA, yA), which were on opposite sides of the tie line on the Txy plot, are now
a point on the blue equilibrium line. Now each point on the graph represents an equilibrium state
at some temperature. With these plots, it is often useful to plot the line y = x which is represented
in grey. Think back to equation 1.4, the equilibrium expression form of relative volatility

yA =
xAαAB

1 + (αAB − 1)xA

Equations like this one are the blue line on this x-y plot! For this reason, almost all graphical
analysis which aims to relate a separation process to equilibrium, will make use of this graph.

The above x-y diagram is an example of ideal VLE, the assumption which guides most mathe-
matical analysis of volatility based separation processes. However, ideal equilibrium information is
frequently quite different from information derived from imperial data, or even more complicated
models. Here is an x-y plot of the equilibrium between the same two components, using the SRK
equations of state.
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Figure 1.3: x-y Diagram with Wilson Equation

Notice how it’s not even the same shape! Non-ideal models and especially empirical data are
significantly more accurate than ideal models. In this case, an azeotrope at xA = yA = 0.8 is
omitted from the ideal model. This is more clearly seen from the associated Txy diagram.
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Figure 1.4: Txy Diagram with Wilson Equation

The intersection of the liquid mole fraction x and the vapour mole fraction y is the temperature
when this mixture is an azeotrope.

Definition. An azeotrope is a solution in which the solution has a single uniform boiling point
when liquid and mole fractions of a component are equal
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Understanding when and if azeotropes occur is essential, as distillation of an azeotrope is not
possible. Ideal models can never account an azeotrope, which is an example of how complex models
and empirical data are always better than ideal models.

Flash Distillation

We now have the tools to analyse our first unit operation. Flash distillation is by far the
most straight forward of all the separation processes. A feed stream is fed into a flash drum, at
which point it is instantaneously and continuously brought to a given temperature and pressure.
The feed reaches equilibrium inside the drum, and then exits in a vapour and liquid product. As
such, the more volatile component is of higher concentration in the vapour product. There is only
one equilibrium stage. For all separations based on volatility, the relative volatility of the two
components must be sufficiently high such that the folliwing inequality is satisfied

αAB ≥ 1.05 (1.8)

Quick Facts.

− Property Exploited: Volatility

− Driving Force: Vapour-Liquid Equilibrium

− Separation: Vapour/Liquid

The property exploited is the property of the components that is the basis for the separation.
The driving force is the aspect of the system that causes the separation. Although in this case they
are for all intents and purposes the same, this isn’t necessarily true, as we will see in later sections.
Below is a Process Flow Diagram, or PFD of a flash distillation.

F

zA

V

yA

xA

L

Figure 1.5: PFD of Flash Drum

In this diagram F , V , and L are the Feed, Vapour, and Liquid flowrates respectivly, and would
be measured in units such as kgmol/h or lb/min. zA, yA, and xA are the overall, vapour, and
liquid fraction of A, in their respective streams.

As for all separation processes, we know that the amount of mass or moles of feed flowing into
the system is equal to the amount of product leaving the system. Therefore, two mass balances can
be derived around this flash drum:
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F = V + L (1.9)

FzA = V yA + LxA (1.10)

1.9 describes the overall mass balance of the system, while 1.10 is the mass balance with respect
to component A. Solutions to flash drums frequently involve combining these two equations. If,
during the solution process, these mass balances result in a contradiction, the distillation in ques-
tion is not achievable with this method.

It is quite commonplace, particularly with more intricate processes, for the subscript A to be
dropped, as it is implied that in a binary system, we are referring to the composition of the more
volatile component. These variables, zA, yA, xA are what we call mole fractions. As you may recall,
they represent the fraction of component A in each particular stream. Although these are generally
expressed as unitless quantities, there is a nuance to the units themselves. The units of xA, for
example are:

moles of liquid A

total moles of liquid

which we can further simplify to
mol A

mol

and is generally thought of and canceled out as ”moles per mole”. While you may never explicitly
express the units of these mole fractions, and simplify these variables to unitless quantities, be sure
to keep in mind that, for example, the units of xA and the units of yA are diffrent as they are
fundimentally not measuring the same thing.

When solving any separation process, it is essential to make key assumption which enable certain
methods of analysis. The assumptions for flash distillation are as follows

1. Continuous Process at Steady State

2. No Reactions

3. Ideal Vapour-Liquid Equilibrium

It is essential to include these assumptions in any solution to a flash distillation. The assumption
of steady state and continuous allows us to treat the flowrates as constant, and the assumption of
no reactions enables us to draw the partial mass balance of 1.10. Assuming ideal equilibrium lets
us apply Raoult’s law, 1.5, and all other equations which only apply in an ideal setting.

There is a very similar process to flash distillation which involves stacking multiple flash drums
in series to create multiple equilibrium stages. Condensers placed after intermediate vapour streams
to ensure vapour-liquid interaction occurs. This is called a Flash Drum Cascade. It will be left as
an exercise to the reader to extend our model of process analysis to flash drum cascades.
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Chapter Review : Equilibrium and Two-Phase Systems

In this chapter, we learned about vapour-liquid equilibrium, what equilibrium is, and how to
use graphical and algebraic equilibrium information to solve a problem. Then, we learned our first
application of a separation process, flash distillation, which exploits volatility and is driven by VLE.

Flash Distillation PFD

F
zA

V
yA

xA

L

Flash Distillation Assumptions

1. Continuous Process at Steady State

2. No Reactions

3. Ideal Vapour-Liquid Equilibrium

Equations

1. αAB =
PA/xA

PB/xB

≥ 1

2. αAB =
yA/xA

yB/xB

3. yA =
xAαAB

1 + (αAB − 1)xA

4. αAB ≈ P ∗
A(T )

P ∗
B(T )

5. αAB ≥ 1.05

6. PA = yAP

7. yAP = xAP
∗
A(T )

8. Degrees of Freedom = C − P + 2

9. F = V + L

10. FzA = V yA + LxA

Txy and x-y diagrams

Equilibrium information can be read of Txy
and x-y diagrams as shown in these figures
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x-y Diagram for A and B
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Key Points

• The best equilibrium information is empir-
ical data

• Intensive properties are size-independent

• Binary systems have two Gibbs Degrees of
Freedom

• Azeotropes occur when xA = yA and can-
not be distilled

1-4. Equations for relative humidity 5. Inequality for distillation 6. Partial Pressure 7. Raoult’s
Law 8. Gibbs Phase Rule 9-10. Mass balance for flash drum
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Chapter 2
Column Distillation

Suppose you wish to perform a separation which requires ten equilibrium stages to complete,
five to purify the vapour product, and five to purify the liquid product. With flash drums, this
would require ten of them, stacked in series. The facility required to house this equipment would
be enormous and the cost would be prohibitive. Fortunately, there is a better way.

The Stripping Column

In order to spend an entire semester discussing separation processes, one must truly fall in love
with distillation columns. One must study them during the day and dream of them at night. One
must let them become every breath, every word. One must become obsessed. Is it no wonder then,
that here, with stripping columns, is where the journey begins?

A stripping column is a vapour/liquid separation unit which strips a liquid feed of the more
volatile component. It is a multi-stage process, with different equilibria occurring at different
temperatures at different discrete trays throughout the column.

Quick Facts.

− Property Exploited: Volatility

− Driving Force: Vapour-Liquid Equilibrium

− Separation: Vapour/Liquid

The column itself is made up of individual trays, which allow vapour and liquid phases to inter-
act. Each tray has a unique equilibrium composition, hence, this is a multi-stage process. This is
leveraged to create a much more powerful separation process than a single-stage flash drum.

The trays themselves are made up of large circular disks with bubbling areas welded to them,
separated from the walls of the column by barriers called weirs which extend above the tray. Liq-
uid interacts with vapour at these bubbling areas, and excess will overflow into the tray below via
the bottom part of the weir called the downcomer. Similarly, vapour will rise above to the next tray.

Below is the PFD of a stripping column:
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Reboiler

F

z

V̄
y1

V̄
yk

V̄
yk+1

L̄
xk

L̄
xk−1

tray n

tray k + 1

tray k

tray k − 1

tray 1

V̄
yn+1

L̄
xn

B

xB

Figure 2.1: PFD of Stripping Column

In this diagram, z refers to the feed composition, each yk and xk refer to the vapour and liq-
uid compositions of their respective stream, V̄ and L̄ are the vapour and liquid streams, where
the bar drawn above the variable signifies that this is a stripping column. B represents the bot-
toms product stream and F represents the feed stream. By convention, trays are numbered top
down, with tray n being the last tray on the bottom and streams are numbered with respect to
the tray which they are leaving, Arbitrary trays in a stripping column are denoted with the letter k.

It is important to recognise the difference between stages and trays.

Definition. An equilibrium stage is a place in which there exists equilibrium between the two com-
ponents

At first it may seem as if stages and trays mean the same thing, after all, trays are stages.
However, trays are not the only place within a stripping column in which equilibrium occurs.
Consider the reboiler; within the reboiler, there is a liquid input and both a vapour and liquid
output, therefore the reboiler is an equilibrium stage. Note that this is true only in the case of a
partial reboiler, one which does not reboil the entire stream. For total heat exchangers, modules
in which the phase of the entire feed is changed, no equilibrium occurs, and thus they are not stages.

Just as in flash distillation, stripping columns come with their own set of assumptions, most of
which should be familiar. The standard set of assumptions are as follows

1. Constant Molar Overflow (CMO)

2. Constant Pressure
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3. Ideal Stages

4. Continuous Process at Steady State

5. No Reaction

We must assume that the system is at constant pressure, as pressure will also affect each equi-
librium stage differently. We also make a new assumption, called Constant Molar Overflow, often
abbreviated as CMO.

Definition. Constant Molar Overflow is the assumption which claims that the moles of vapour and
liquid which flow from one tray to the next are constant throughout the column

The implication of CMO is that we can assume

V̄1 = V̄2 = V̄3 = · · · = V̄n

and

L̄1 = L̄2 = L̄3 = · · · = L̄n

in other words, that any liquid and vapour flows are equal to each other. Note that:

L̄k ̸= V̄k

The equality only holds between vapour and liquid flows respectively. This is why in the diagram,
rather than labeling the flowrates V̄1, V̄2, V̄3 · · · , instead they are all simply labeled V̄ .

The following mass balances can be drawn around a stripping column.

F = V̄ +B (2.1)

L̄ = V̄ +B (2.2)

L̄xk−1 = V̄ yk +BxB (2.3)

Through combining equations 2.1 and 2.2, a key understanding is reached about stripping
columns: F = L̄. Although this may be surprising at first, in the context of a stripping column, it
should make sense. Suppose a stripping column had a mixed vapour-liquid feed. All vapour in this
feed would immediately flow out in V̄1. Thus stripping columns only take a liquid feed, all of which
enters the first tray. By assuming CMO, if one of the liquid flowrates is equal to the feed flowrate,
all of them must be. Therefore, in a stripping column, F = L̄.

Although many possible partial balances can be drawn all throughout the column, 2.3 is of
particular importance. Rearranging variables, we get the following:

yk =
L̄

V̄
xk−1 −

B

V̄
xB (2.4)

Which is a line, with slope and intercept:

L̄

V̄
and − B

V̄
xB

The Operating Line: Stripping

We will now discuss the operating line of a separation process, as it applies to stripping columns.
For all multi-stage separation processes with discrete stages, an operating line can be derived from
the partial mass balance around these stages. Whereas the equilibrium line, which is plotted on an
x-y plot, shows the relationship between an yk and xk in equilibrium, the operating line shows the
relationship between yk and xk−1. Physically on a stripping column, this represents the composition
of the streams entering and leaving a tray on the same side.
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Figure 2.2

Here we can see the physical relationship between between the equilibrium line and the operat-
ing line with respect to any given tray on a stripping column.

As derived in the last section 2.4, the operating line of a stripping is

yk =
L̄

V̄
xk−1 −

B

V̄
xB (2.4)

which can be plotted alongside an equilibrium line on an x-y plot as seen below. This is the Wilson
Equation model for vapour-liquid equilibrium between ethanol and water from Chapter 1. Note
that the equilibrium line contains all points (xk, yk), and the operating line contains all points
(xk−1, yk).
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Figure 2.3: Equilibrium Line and Operating Line

We can determine much about this process from this stripping line. The points of intersection
with the equilibrium line are the bounds of the stripping process, ie. it would be impossible to
process a feed stream with 0x > 0.5 or x < 0.1. Secondly, we know that the slope of the operating
line is equal to L̄/V̄ , so we can further solve the system with this information. Lastly, as an exer-
cise, substitute xB for x. You will discover that the point (xB , xB) always exists on the stripping
operating line. Since this gives you both a point and a slope, this information is particularly useful
when drawing the operating line.
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You may have also noticed that this line has a negative y-intercept and a slope greater than
one. In a stripping column it is always true that

L̄

V̄
≥ 1

This has large implications for boilup, the ratio of V̄ /B, as this limits the possible boilup ratios for
a given system.

Key Point. The case of maximum boilup corresponds to the minimum slope of the operating line
which is the line y = x

Conversely, the maximum boilup possible is represented by the operating line drawn between the
points (xB , xB) and (z, y∗) where y∗ is the vapour concentration in equilibrium with the liquid feed.

Boilup is a key factor in a stripping column, and oftentimes it is one of the intensive properties
needed to solve a system. Given this, it is possible to express the operating line for a stripping line
in terms of the boilip ratio, RB . This is derived in Appendix A from 2.4 and the definition of the
boilup ratio as V̄ /B.

yk =
RB + 1

RB
xk−1 −

1

RB
xB (2.5)

McCabe-Thiele Analysis: Stripping

We now have all the information we need to leverage McCabe-Thiele analysis to determine how
many equilibrium stages are necessary to complete a stripping distillation.

We are going to draw a staircase from the feed stream composition, all the way down to the
bottoms product composition, placing a stair at every equilibrium stage. Conceptually, these stairs
represent first traveling from the vapour composition leaving a tray to the liquid composition leav-
ing the tray, then from the liquid composition leaving the tray to the vapour composition entering
the tray, leveraging the equilibrium and operating lines respectively.

V
yk

V
yk+1

L
xk−1

L
xk

tray k

Figure 2.4 McCabe-Thiele, Actually

Here, the line from yk to xk represents the first part of the stair, and the line from xk to yk+1

represents the second part of the stair. Let’s see the stairs on an actual x-y plot.
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Figure 2.5: Example of McCabe-Thiele Analysis

Now we can see the stairs in all their glory. The horizontal part of the stairs move from yk to
xk and the vertical part of the stairs move from xk to yk+1. This example is for a stripping column
whose feed is z = 0.8 and whose bottoms product is xB = 0.03. These compositions are the top and
bottom of the staircase. Each stair represents an equilibrium stage, meaning this process would
require 3; two trays and one partial reboiler. The stages are labeled top from bottom, and the
bottom stage is labeled R for Reboiler. Note that you cannot do McCabe-Thiele analysis when the
operating line is above the equilibrium line. This is a general heuristic for the limiting conditions of
operating lines - if McCabe-Thiele analysis is geometrically prohibited, the separation is not feasible.

When drawing McCabe-Thiele analysis on a physical graph, it is important to be as accurate
as possible. For this reason, always use a straight-edge and begin drawing lines from the target
composition at the bottom of the column.

In the last section we learned that when the operating line is y = x, the boilup ratio is maximised.
But what happens to the number of stages? It should be rather easy to infer graphically, that as
the line becomes steeper, the number of stairs on the McCabe-Thiele staircase increase.

Key Point. The steepest operating line corresponds to the maximum number of stages, n = ∞ and
the operating line y = x corresponds to the least possible number of stages (maximum boilup)

The Enriching Column

What if you would like to increase the composition of the more volatile component via distilla-
tion? If so, an enriching column is the separation process best suited for your needs.

An enriching column is a vapour/liquid separation unit which enriches a vapour feed with the
more volatile component, producing a vapour product which is condensed into a liquid distillate.
It is a multi-stage process, and as you will see, is quite analogous to stripping columns.

Quick Facts.

− Property Exploited: Volatility
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− Driving Force: Vapour-Liquid Equilibrium

− Separation: Vapour/Liquid

Enriching columns are constructed in the same manner as stripping columns, the key difference
being that the feed is placed at the bottom rather than at the top. Below is a PFD of an enriching
column.

F

z

V
y1

V
yj

V
yj+1

L
xj

L
xj−1

tray n

tray j + 1

tray j

tray j − 1

tray 1

L
xn

D

xD

L
x0

Figure 2.6: PFD of Enriching Column

For enriching columns, the bar is dropped above all flowrates, and arbitrary trays are denoted
as j. Above the column is a total condenser, which processes the vapour outlet V1 and condenses
it into a liquid. Of this liquid, some is produced as distillate product D, and the remainder is fed
back into the column as reflux, L0. Reflux is the enriching equivalent of boilup.

While typically an enriching column will have a total condenser, it is possible for an enriching
column to have a partial condenser. Similar to a partial reboiler, a partial condenser has both
vapour and liquid streams leaving the heat exchanger. In this case, there is a vapour purge as well
as the distillate product stream as shown below.

V

y1

D

xD

L
x0

Vapour Purge

Figure 2.7: PFD of Partial Condenser
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The assumptions for enriching columns are the same as the assumptions for stripping columns:

1. Constant Molar Overflow (CMO)

2. Constant Pressure

3. Ideal Stages

4. Continuous Process at Steady State

5. No Reaction

And in a similar way to stripping columns, mass balances can be drawn around the trays,
condenser, and entire column.

F = L+D (2.6)

V = L+D (2.7)

V xj+1 = Lyj +DxD (2.8)

By combining equations 2.6 and 2.7, we can clearly see that F = V in the same way that
F = L̄. This should make sense conceptually, as any liquid feed will simply flow out the bottom of
the column. Also, by rearranging equation 2.8 we get the operating line for an enriching column.

yj =
L

V
xj−1 +

D

V
xD (2.9)

The Operating Line: Enriching

There are a few key differences between the operating line for a stripping column. A helpful
heuristic for understanding this is that enriching tends to be opposite in chirality from stripping.
The first difference is the equation itself:

yk =
L̄

V̄
xk−1 −

B

V̄
xB (2.4)

yj =
L

V
xj−1 +

D

V
xD (2.9)

Although the variables are roughly in the same place, these two lines behave somewhat differ-
ently. The cause for this is the relationship between the feed stream F and the vapour or liquid
stream V and L̄. In stripping columns, the feed flowrate is equal to the numerator of the operating
line slope. In enriching columns, the feed flowrate is equal denominator of the operating line slope.

Another manifestation of this mirror-image relationship is the reflux form of the equation for
the operating line. The reflux ratio is defined as R = L/D, the proportion of vapour product
condensed and fed back into the column as opposed to extracted as product. Combining this with
the operating line, we get

yj =
R

1 +R
xj−1 +

1

1 +R
xD (2.10)

which is quite similar to the operating line of a stripping column written in terms of the boilup
ratio. This is also proven in Appendix A. Graphically, they are similar but different as well.

18



0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Liquid mole fraction of A

V
ap

o
u
r
m
o
le

fr
ac
ti
on

o
f
A

Figure 2.8: Operating Line for Enriching

Notice how now, the operating line has a slope lesser than one, intersecting the y-axis above the
x-axis. It is indeed true that 0 ≤ L/V ≤ 1, and again, this returns to the numerator-denominator
relationship between stripping and enriching operating lines and their feed.

What then, do you think happens in the case of minimum reflux? Since F = V , L increases as
reflux increases (Remember that all liquid and vapour flows are constant throughout the column by
CMO). This should be evident from the PFD of an enriching column. But, we know that L/V ≤ 1,
since the slope of the operating line is more shallow than y = x. Conceptually, this represents that
L < V = F . If L were to exceed V and F then somehow your column would be generating mass, a
discovery worth further investment. Thus, maximum reflux is when L is maximised, when L = V ,
and minimum reflux is when L is minimised.

Key Point. The shallowest operating line corresponds to the maximum number of stages, n = ∞
(minimum reflux), and the operating line y = x corresponds to the least possible number of stages
(maximum reflux R = 1)

To draw the operating line which represents the case of minimum reflux, begin at the point
(xD, xD), a point which we know is on the enriching operating line for the same reason that the
point (xB , xB) is on the stripping operating line. Then, find the point on the equilibrium line where
y∗ = z, which we can notate as (x∗, z). Notice how now the z term represents a y-coordinate,
whereas in stripping, z represents an x-coordinate. This is because enriching columns require a
vapour feed, while stripping columns require a liquid feed. The line drawn between (xD, xD) and
(x∗, z) will be the operating line of shallowest slope for the separation in question, and will represent
the case of minimum reflux. For example, the operating line drawn in Figure 2.8 represents the
case of minimum reflux for a column whose feed has the composition z ≈ 0.5.

McCabe-Thiele Analysis: Enriching

For those who have mastered the art of McCabe-Thiele Analysis for a stripping column, applying
the technique to an enriching column should come with relative ease. It is after all, the same process,
which requires the same conceptual understanding. Here, we begin at the point (xD, xD) and draw
our stairs down towards the feed, represented by the point (x∗, z). Just as before, the number of
stages is represented by the number of stairs drawn on the graph.
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Figure 2.9: McCabe-Thiele Analysis for Enriching

From this plot, we can see that an enriching process, which enriches a vapour feed of z = 0.65
to a purity of y = 0.85, requires three equilibrium stages, labeled as three trays. Why, you may
ask, isn’t the condenser considered one of the stages? If it were a partial condenser, then it would
be correct to label what is labeled 1 on Figure 2.9 C for condenser, but as there is typically a total
condenser in an enriching column, and total heat exchangers are not equilibrium stages, it is safe
to say that this process requires three trays.

Once more, we can understand the limits of our unit operation through the geometric limits
of McCabe-Thiele analysis. We cannot enrich feeds more dilute than where the operating line
intersects the equilibrium line, and approaching this point would require exponentially more trays
as we get nearer. Observations such as these are why graphical McCabe-Thiele analysis is such a
powerful tool.

Tray Column Distillation

When the feed stream is placed at the bottom of a tray column, the result is an enriching
column, and when the feed stream is placed at the top of a tray column, the result is a stripping
column. But what if the feed is placed somewhere in between?

In that case, we have a standard tray column. The area above the feed is the enriching section
and the area below the feed is the stripping section. Both operate exactly as we have learned, but
there are some novel consequences to putting them together. The best way to understand what is
happening is by looking at a PFD.
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Figure 2.10: PFD of Tray Column

Notice how this is simply an enriching column and a stripping column put on top of one another!
The motivation for this is simple: where each section can only process a single-phase feed, a tray
column can process a mixed feed, producing both stripped and mixed products. Often, multiple
organic compounds are produced simultaneously, all valuable in their pure form. As such, a tray
column can separate and purify both the more and less volatile compound.

Quick Facts.

− Property Exploited: Volatility

− Driving Force: Vapour-Liquid Equilibrium

− Separation: Vapour/Liquid

It should come as no shock that the property exploited, driving force, and separation environ-
ment are the same for enriching columns, stripping columns, and overall tray distillation. As a rule,
what is true for enriching and stripping columns is true for the enriching and stripping sections of
a tray column. For example, these are the assumptions for a tray column.

1. Constant Molar Overflow (CMO)

2. Constant Pressure

3. Ideal Stages

4. Continuous Process at Steady State

5. No Reaction
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What does CMO mean for a tray column? The implication is slightly different from stripping
and enriching columns. Within each section, stripping and enriching, all V = V and all L = L,
however, this is not true across sections. Importantly,

V̄ ̸= V

L̄ ̸= L

The vapour part of the feed is equal to V and the liquid part of the feed is equal to L̄, otherwise
stated as

F = V + L̄ (2.11)

which is easily derived as the mass balance around the feed tray. Similarly, the overall and partial
mass balances of a tray column are

F = B +D (2.12)

Fz = BxB +DxD (2.13)

Note that 2.12 and 2.13 can be rearranged as

D =

(
z − xB

xD − xB

)
F (2.14)

The operating lines, derived from the partial mass balances drawn around arbitrary tray j and
tray k remain the same. Note that a tray column does not have one operating line, but two, which
is another implication of CMO for tray columns.

yk =
L̄

V̄
xk−1 −

B

V̄
xB (2.4)

yj =
L

V
xj−1 +

D

V
xD (2.9)

The boilup and reflux ratios are also important intensive properties of a tray column, where

RB =
V̄

B
(2.15)

R =
L

D
(2.16)

and the operating lines of each section can be rewritten in terms of these ratios

yk =
RB + 1

RB
xk−1 −

1

RB
xB (2.5)

yj =
R

R+ 1
xj−1 +

1

R+ 1
xD (2.10)

The Feed Line

Since the feed is no longer restricted to a single phase, it is useful to the analysis of a tray
column to quantitatively capture the liquid-like and vapour-like nature of the feed.

Definition. The quality of the feed q is the fraction of the feed which is liquid

Feed quality q is defined by the following

q =
L̄− L

F
(2.17)

1− q =
V − V̄

F
(2.18)
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It will be left as an exercise to the reader to derive 2.18 from 2.17.

Leveraging these definitions of q, and the partial mass balances for the feed tray with respect
to each section (note that these already contain the substitution of V and L̄ for F )

V y = Lx+DxD

V̄ y = L̄x−BxB

a very important line, called the q-line or feed line, can be derived which enables full McCabe-Thiele
analysis for a tray column. The derivation of this is in Appendix A.

y =
q

q − 1
x+

z

1− q
(2.19)

Since 2.19 is derived from the assumption that yj = yk and xj = xk, it necessarily describes
the feed stage, which is the exact use case we will see shortly. In the same way that the point
(xB , xB) will always lie on the stripping operating line, the point (z, z) will always lie on the feed.
line. Proving this will be left to the reader.

What kinds of feed quality are there? The most common type of feed is a mixed feed which
contains both liquid and vapour. Saturated liquid feeds and saturated vapour feeds contain only
liquid and vapour, and are at the bubble and dew points respectively. Lastly, subcooled and
superheated feeds are liquid and vapour feeds at extreme temperatures.

Definition. A superheated vapour cannot be condensed at any pressure

Definition. A subcooled liquid is a liquid below the saturation temperature

Superheated and subcooled feeds cause strange behaviors with respect to the liquid and vapour
streams. This is because the temperature of the feed affects the temperature of the column itself.
For example, a subcooled liquid feed can condense the vapour flow V̄ into liquid L̄. Thus L̄ > L
and q > 1

All five feed types change q and create a q-line with unique properties. These have been
tabulated below:

Feed Type q-value q-line slope y-intercept

Subcooled Liquid q > 1 positive negative
Saturated Liquid q = 1 x = z N/A

Mixed Feed 0 < q < 1 negative positive
Saturated Vapour q = 0 y = z z

Superheated Vapour q < 0 positive positive

Figure 2.11 q-value and q-line information

McCabe-Thiele Analysis: Tray Columns

Think back to the derivation of the feed line and how it is defined. We leveraged the fact that
the equilibrium composition of the feed tray is both part of the stripping and enriching section.
This also tells us something about the operating lines:

Key Point. The intersection of the enriching operating line and the stripping operating line occurs
on the feed line

When drawing these lines on an x-y plot, this is unimaginably important. For example, given
a feed line, the points (xD, xD), (xB , xB), and either operating line slope, both operating lines can
be constructed. Remember, no matter how complex, a binary, two-phase system can be defined
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completely from two intensive properties. The feed line is the key to realising this.

With an x-y plot of equilibrium information, the enriching and stripping operating lines, and
the feed line, we are now ready to perform McCabe-Thiele analysis on a tray column.
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Figure 2.12: Complete x-y plot for Tray Columns

Figure 2.12 is an x-y equilibrium plot in blue, with the q-line in red, and enriching and stripping
operating lines in black. Using the line y = x in grey, it is clear which line is the stripping operating
line, and which line is the enriching operating line. During McCabe-Thiele analysis, the enriching
operating line is only relevant above the intersection with the feed line, and the stripping operating
line is only relevant below this point. Notice that the range of possible enriching operating lines is
the set of lines which contain (xD, xD) and intersect the feed line between its intersection with the
equilibrium line and the line y = x. The equivalent statement is also true of the stripping operating
line and (xD, xD).
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Figure 2.13: McCabe-Thiele Analysis for Tray Columns

Above is an example of McCabe-Thiele analysis for a full tray column. The irrelevent sections
of both operating lines have been shortened to make the diagram more visually clear. Analysis on
a full column should generally begin on the side of the column for which you are given information.
In this case, assume analysis begins at the top. Notice how after the analysis staircase crosses the
feed line, the vertical lines are drawn to the stripping operating line, whereas before they are drawn
to the enriching operating line. Although this seems logical, doing McCabe-Thiele analysis with
respect to the wrong line is a very common error.

Also pay attention to how the sixth and final stage is labeled as the reboiler, yet the first stage
is not labeled as the condenser. This is because a standard distillation column has a partial reboiler
which is an equilibrium stage and a total condenser which is not. This column has six stages, five
trays, and produces a distillate of xD = 0.8 and a bottoms product of xB = 0.05.

What is the feed composition? Technically, the feed could be comprised of any composition,
so long as it lies on the relevant operating line beneath the equilibrium line. However there is a
correct choice.

Key Point. The ideal feed stage is the stage which contains the intersection of the feed line and
the equilibrium line.

In Figure 2.13, the ideal feed stage would be tray 3. When drawing McCabe-Thiele analysis for
a column with non-ideal feed placement, switch which operating line the vertical lines are drawn
to once the feed stage is passed, not the intersection of the feed line and the equilibrium line. The
latter method implies ideal feed placement.

The composition of each tray can also be determined from McCabe-Thiele analysis. The corner
of each McCabe-Thiele stair which touches the equilibrium line at point (xj , yj), where j is the
number of the stage, counted from the top.
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Temperature and Pressure

Reboilers are a heat exchanger which heats a liquid stream until it vaporises. A condenser is a
heat exchanger which cools a vapour stream until it condenses. It then follows, that the warmest
point on the column is the reboiler, and the coolest point on the column is the condenser. Through
the rest of the column, the temperature varies, increasing down the column. We refer to the maxi-
mum and minimum temperatures of a column as Tmin and Tmax respectively.

This temperature trend should be logical, because, near the top of the column, the vapour stream
contains mostly the more volatile component, which is to be expected at a lower temperature.

Key Point. For a condenser to operate cost-effectively, Tmin ≥ 30◦C

This is because water cannot be used as a coolant for temperatures less than 30 ◦C, and water
is by far the most cost-effective coolant. Importantly, it is cheaper to change the pressure, than to
utilize a different coolant.
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Figure 2.14: Txy Diagram for A and B

Suppose the distillate product of a distillation column has the composition xD = 0.95. What
is the temperature Tmin? Determining this is fairly easy, simply find the isothermic line on the
Txy plot which represents this composition and determine the temperature. For a composition
of x = 0.95, the temperature must be 79 ◦C. In fact, the temperature of any equilibrium stage
can be determined in this way. We know that this is the temperature at which this vapour-liquid
equilibrium occurs as each VLE is associated with exactly one temperature

We assume a particular column is isobaric because a unique Txy plot exists for each possible
pressure. We can leverage this such that Tmin ≥ 30◦C. Simply increase the pressure to change
Tmin.
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Figure 2.15: Txy at 1 atm
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Figure 2.16: Txy at 5 atm

Notice how changing nothing but the pressure changes not just the location, but the shape of
these curves. As a general trend, increasing pressure will increase Tmin, after all

PV = nRT

Atmospheric pressure is still the cheapest option if possible, but it is by far cheaper to change
the pressure than choose a different coolant.

Column Efficiency

Up until this point, we have been assuming that our columns are operating with 100% efficiency.
Clearly, neither you nor I are engineers talented enough to confidently assume this. To determine
how we might calculate efficiency in this context, first we must consider what efficiency means for
a given column or tray.

We have assumed that each tray achieves ideal vapour liquid equilibrium. This is the source
of the inefficiency: distance from equilibrium. The answer to “How far from ideal VLE is this
column?” is the efficiency of the column.

Definition. The efficiency of a column or tray is its performance with respect to equilibrium

How might efficiency be affected by the properties of the column? Efficiency is decreased by
anything which might prohibit ideal vapour-liquid equilibrium behavior.

• Increased Viscosity

• Decreased Flowrates

• Decreased Mass Transfer Rates

• Poor Ease of Separation

• Small Column Size

A particular method of measuring efficiency for a single tray, Murphree Efficiency, is repre-
sented with either a liquid or vapour basis, represented by EML and EMV respectively. These two
efficiencies are defined as the following

EMV =
yj − yj+1

y∗ − yj+1
(2.20)

EML =
xj − xj−1

x∗ − xj−1
(2.21)
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where the numerator represents the actual change in concentration and the denominator represents
the change in concentration for an equilibrium stage. From this information we can determine the
number of stages required for any given Murphree efficiency.
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Figure 2.17: McCabe-Thiele Analysis for EMV = 0.5

Note how each McCabe-Thiele stair only rises half of the way to the equilibrium line. The
proportion it travels toward the equilibrium line is the ratio represented by EMV . If the efficiency
were to have been a Murphree liquid efficiency, then all of the horizontal lines would have been
shortened, rather than the vertical.

To draw Murphree vapour efficiency, begin at (xB , xB) and continue your analysis until you
reach (xD, xD). Conversely, to draw Murphree liquid efficiency, begin at (xB , xB), and travel down
the graph. Also note that the line beneath the reboiler is unaffected by the efficiency. Even with a
defined Murphree efficiency, we still treat the reboiler as ideal due to its extreme environment.

In a way, we are drawing our McCabe-Thiele analysis to a different equilibrium line, one rep-
resenting the inefficient non-ideal equilibrium present to the column. We call this the pseudo-
equilibrium line.
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Figure 2.18: Psuedo-equilibrium line EMV = 0.5

Now that we know the number of trays needed to run this distillation at EMV = 0.5, we can
calculate the Overall Efficiency, Eo. This is the following ratio, where N represents the number of
trays.

Eo =
Nideal

Nactual
< 1 (2.22)

Looking at this equation and the pseudo-equilibrium line, it should make sense that it requires
more trays to complete a less ideal distillation. For example, the above has an overall efficiency of
0.45 since the ideal distillation requires 5 trays, and the EMV = 0.5 case requires 11. Note that

EMV ̸= EML ̸= Eo

since all three of these measurements take different bases and measure efficiency differently.
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Chapter Review : Column Distillation

In this chapter, we learned about enriching and stripping columns, and total tray distillation.
We learned to analyse separation processes via McCabe-Thiele analysis and defined the operating
lines and feed line. Lastly, we learned to quantify efficiency, pressure, and temperature.

Tray Distillation PFD

tray k

tray j

tray n

tray 1

feed tray
F

z

V̄
yk

L̄
xk−1

V̄
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L̄
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L̄
xn

V̄
xn+1

L̄

Reboiler
B
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V
yj

V
yj+1

L
xj−1

L
xj

V
y1

L
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D
xD

Assumptions:

1. Constant Molar Overflow (CMO)

2. Constant Pressure

3. Ideal Stages

4. Continuous Process at Steady State

5. No Reaction

Equations

1. yk =
L̄

V̄
xk−1 − B

V̄
xB

2. yk =
RB + 1

RB
xk−1 −

1

RB
xB

3. yj =
L

V
xj−1 +

D

V
xD

4. yj =
R

1 +R
xj−1 +

1

1 +R
xD

5. Fz = BxB +DxD

6. RB =
V̄

B

7. R =
L

D

8. q =
L̄− L

F

9. 1− q =
V − V̄

F

10. y =
q

q − 1
x+

z

1− q

11. EMV =
yj − yj+1

y∗ − yj+1

12. EML =
xj − xj−1

x∗ − xj−1

13. Eo =
Nideal

Nactual
< 1

1. Stripping Operating Line 2. Boilup Operating Line 3. Enriching Operating Line 4. Reflux
Operating Line 5. Partial Mass Balance 6. Boilup Ratio 7. Reflux Ratio 8-9. Feed Quality 10.
Feed Line 11-12. Murphree Efficiency 13. Overall Efficiency
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Feed Line Information

Feed Type q-value q-line slope y-intercept

Subcooled Liquid q > 1 positive negative
Saturated Liquid q = 1 x = z N/A

Mixed Feed 0 < q < 1 negative positive
Saturated Vapour q = 0 y = z z

Superheated Vapour q < 0 positive positive

McCabe-Thiele Analysis

McCabe-Thiele Analysis can be drawn on x-
y plots to calculate the number of trays, tray
composition, tray temperature and pressure, and
optimal feed stage
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McCabe-Thiele Analysis for Tray Columns
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McCabe-Thiele Analysis for EMV = 0.5

Inequalities

1.
L̄

V̄
≥ 1

2. 0 ≤ L

V
≤ 1

3. Tmin ≥ 30◦C

4. Eo < 1

Stripping Mass Balances

• F = L̄

• F = V̄ +B

• Fz = V̄ x+BxB

Enriching Mass Balances

• F = L

• F = L+D

• Fz = Lx+DxD

Tray Distillation Balances

• F = B +D

• Fz = BxB +DxD

• L̄ = V̄ +B

• V = L+D

Key Points

• Minimum trays occurs when operating
lines are y = x

• Maximum trays corresponds to minimum
boilup and reflux

• (xB , xB), (xD, xD), (z, z) lie on stripping,
enriching, and feed lines respectively

1. Stripping Operating Line Slope 2. Enriching Operating Line Slope 3. Minimum Column
Temperature 4. Overall Efficiency
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Chapter 3
Non-Discrete Equilibrium Stages

Until now, we have studied processes which have discrete trays which act as equilibrium stages.
However, it is possible for there to be many more equilibrium environments, in which y gradually
and continuously throughout the column.

Gas Film Theory

The mechanism for gradient equilibrium change is different than the mechanism for discrete
equilibrium stages. Recall that the driving force for tray distillation is vapour-liquid equilibrium.
At each tray, vapour and liquid streams come equilibrium where the vapour stream is more pure
with respect to the more volatile component. Clearly, vapour-liquid equilibrium between the two
streams drives this process.

Gradient equilibrium change also exploits differences in volatility, but the driving force is no
longer equilibrium itself.

Quick Facts.

− Property Exploited: Volatility

− Driving Force: Mass Transfer

− Separation: Vapour/Liquid

What is mass transfer? Consider a swimming pool with 5 kilolitres of water in the north half,
and 1 kilolitre of water in the south half. What will happen? The net mass transfer will be south-
ward, and very quickly, each half will contain 3 kilolitres of water. This is the principal that drives
the gas film theory of mass transfer.

Liquid Vapour

xb

y∗

xi yi
yb

x∗

Figure 3.1 Gas Film Theory Model
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There are three assumptions which are necessary to apply this model:

• No reactions

• Vapour and liquid exist on opposing sides of a laminar thin film interface

• Vapour liquid equilibrium exists at the interface

Within a process in which gas film theory applies, there are two key environments to study: the
interface and the bulk. We assume that there exists a gas film membrane separating a large bulk of
liquid from a large bulk of vapour. The liquid and vapour bulk compositions are represented by xb

and yb respectively. Locally, near the membrane, is the interface. This is where liquid and vapour
interact in equilibrium, denoted xi and yi. Since xi and yi are in equilibrium, xi ̸= xb and yi ̸= yb.
Thus there is a concentration gradient between the bulk and the interface on either side of the gas
film membrane.

This is our uneven swimming pool. If yb > yi, there will be a mass transfer from yb to yi. Al-
though I liken this to water rushing to even out the water level of a swimming pool, a more accurate
analogy would be dye placed in one corner of a pool, slowly diffusing until it evenly saturates the
entire body of water. This drive towards diffusion, a concentration gradient, is the driving force of
a gas film membrane.

If yb > yi, then there will be mass transfer towards yi, thus yi will increase. But, yi is in
equilibrium with xi, so mass is transferred across the membrane, increasing xi. Then, since xi >
xb, mass is transferred from the liquid interface to the liquid bulk. By this mechanism, mass
is transferred from the vapour bulk to the liquid bulk, and the flow of mass across the gas film
membrane is called flux.

Definition. Flux is the rate of mass transfer across a membrane, per surface area of the membrane

In this way, flux can be quantified as proportional to the driving force, the concentration gradient
represented by the difference between the bulk and the interface.

NA = ky(yb − yi) (3.1)

NA = ky(yi − yb) (3.2)

NA = kx(xb − yi) (3.3)

NA = ky(xi − xb) (3.4)

In order, these equations are:

• Flux from vapour bulk to vapour interface

• Flux from vapour interface to vapour bulk

• Flux from liquid bulk to liquid interface

• Flux from liquid interface to liquid bulk

Flux depends on two distinct factors. The component with respect flux is calculated, and the
direction of the flux. There are two mass transfer coefficients that can be used here, ky and kx.
These represent the factors other than the concentration gradient which affect flux. When calcu-
lating flux with respect to vapour concentrations, it is necessary to use ky, and for flux calculations
with respect to liquid concentrations, kx must be used. The driving force used reflects the direction
of mass transfer. For example, if (yb − yi) is used, the flux is reported in terms of transfer from the
vapour bulk to the vapour interface. This calculation will be equal and opposite to the calculation
from interface to bulk.
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Flux represents mass transfer across an interface, and the units of flux reflect this. The units of
flux are

quantity

area · time

which, for a molar flow, may take the form of

mol

m2 ·min

Importantly, the units of the mass transfer coefficient are the same as the units for flux, since
the change in concentration is treated as a unitless quantity.

When calculating the flux as the mass transfer from the bulk to interface, we use kx and ky,
which are referred to as the individual phase mass transfer coefficients. We can also consider the
mass transfer from bulk to bulk, represented by the concentration gradient between xb and x∗ or yb
and y∗. In this example x∗ and y∗ are in equilibrium with the vapour and liquid bulk respectively.
For this calculation, the overall phase mass transfer coefficients Kx and Ky are used. Calculating
flux using overall mass transfer coefficients would take the form:

NA = Kx(x
∗ − xb) (3.5)

NA = Ky(y
∗ − yb) (3.6)

Packed Columns

Although gas film theory can be applied to generic mass transfer scenarios, it is particularly
useful in the analysis of packed columns, a near cousin of the distillation column. A packed column
is a distillation column which, rather than contain discrete trays, contains packing, pieces of spe-
cialised material which provides the vapour-liquid interface. As such, the analysis techniques used
for tray distillation cannot be applied since there are no equilibrium stages.

34



Figure 3.2 Types of Packing

Depending on the separation, different packing materials and shapes are used. Particularly, it
is imperative that the packing material does not react with either component of the separation.
It is on the surface area of the packing where the interface between the vapour and liquid bulk
occurs. Generally, it is necessary to use packing which is lightweight, offers satisfactory amounts of
interface area, usually denoted as a, facilitates vapour and liquid flow without holdup or pressure
drop, and is cost-effective.

Quick Facts.

− Property Exploited: Volatility

− Driving Force: Mass Transfer

− Separation: Vapour/Liquid

Below is a PFD of a packed column:

35



F

z

L̄V̄

V

Reboiler
B
xB

L

D
xD

Figure 3.3: PFD of Packed Column

Structurally a packed column is very similar to a tray column, the only difference being the
internals. The assumptions are also analogous:

1. Equimolar Counterdiffusion

2. Constant Pressure

3. Continuous Process at Steady State

4. No Reaction

What is equimolar counterdiffusion? This is the packed column equivalent to CMO, the as-
sumption which enables us to treat all liquid and vapour flowrates within a section of the column
as equal. Equimolar counterdiffusion supposes that diffusion across the interface does not result
in a net change of mass. For every mole of component A that crosses the interface, a mole of B
crosses the interface in the opposite direction. This way the concentration of both bulk systems
varies without changing the net flowrate of the stream.

Transfer Unit Analysis

Since there are no stages, it should come as no shock that McCabe-Thiele analysis cannot be
used to analyse a packed column. Instead, we need to consider the mass transfer which occurs
in a differential height of the column. Rather than find the number of trays necessary, we will
calculate the total height needed to achieve our desired distillation. By using calculus, we can turn
an equilibrium gradient into an infinite sum of infinitesimal stages. One of these differential heights
is labeled on the diagram below.
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Figure 3.4: Differential Height of Packed Column

If we can calculate the flux inside this differential volume of the column, we can integrate to
find the total mass transfer of the column. The resulting equation is a restating of 3.1, derived in
Appendix A.

NAaAcdz = ky(yi − y)aAcdz (3.7)

The term Ac represents the cross sectional area of the column, thus aAcdz is the differential
volume of the column multiplied by the interface surface area. Both sides of this equation calculate
the flux, the amount of component A transferred between phases (in this case from liquid to vapour)
per area of interface, multiplied by the interface area available per volume, multiplied by the volume.
Simplifying away these rates, we are left with the amount of A transferred per time! The net transfer
of A from liquid to vapour can be represented as LdxA or V dyA, the flowrate multiplied by the
change in concentration

NAaAcdz = LdxA = V dyA (3.8)

ky(yi − y)aAcdz = LdxA = V dyA (3.9)

Solving this equation for the height of the column, we get

he =
V

kyaAc

∫ yout,e

yin,e

dyA
(yi − y)

(3.10)

he =
L

kxaAc

∫ xin,e

xout,e

dxA

(x− xi)
(3.11)

So far, we have been solving in terms of an enriching column. For those with a greater affinity
for stripping, these equations can be modified to solve for a stripping column. Just as McCabe-
Thiele analysis requires two operating lines to solve a total tray column, to preform transfer unit
analysis on a packed column with both a stripping and enriching section, the height of each must
be calculated independently.

hs =
V̄

kyaAc

∫ yout,e

yin,e

dyA
(yi − y)

(3.12)

hs =
L̄

kxaAc

∫ xin,e

xout,e

dxA

(x− xi)
(3.13)

These equations can also be solved in terms of bulk-to-bulk overall mass transfer. Recall that
x∗ is the liquid in equilibrium with yb, and y∗ is the vapour in equilibrium with xb
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he =
V

KyaAc

∫ yout,e

yin,e

dyA
|y∗ − y|

(3.14)

he =
L

KxaAc

∫ xin,e

xout,e

dxA

|x− x∗|
(3.15)

hs =
V̄

KyaAc

∫ yout,e

yin,e

dyA
|y∗ − y|

(3.16)

hs =
L̄

KxaAc

∫ xin,e

xout,e

dxA

|x− x∗|
(3.17)

In actual applications, this is the calculation that is almost always being performed. To calculate
with respect to the individual phase transfer would require a measurement of the composition at
the interface, something quite difficult to preform on an operating column. Whereas, overall phase
transfer only requires equilibrium information and an operating line, where x and y are points on
the operating line and x∗ and y∗ are points on the equilibrium curve.

This quantity that is being integrated is the inverse of the driving force, the concentration
gradient of the components. As such, it is called the resistance. As this is almost never an analytic
function, to calculate the integral of the resistance, it is necessary to graph the resistance versus
the change in concentration, and take a rough integral by estimating the area under the curve.

HTUs and NTUs

You may have noticed that all of these equations have a very similar form, that the height is the
product of some constant and an integral. The left part of the product is the height of the transfer
unit whereas the right part of the product is the number of transfer units. These are the imaginary,
differential, trays which a packed column contains. For example, the height of an enriching column
can be expressed as the following.

he = (HTU)OL(NTU)OL

This is equivalent to Equation 3. Here, the subscript OL represents that this is the overall cal-
culation, bulk-to-bulk, and done with a liquid basis. The same calculation could be performed
with respect to a vapour basis, or the individual mass transfer. Importantly, however, you cannot
mix and match within a single equation. If you calculate (HTU)IG, you must also use (NTU)IG.
Crucially, the resulting height from any method of calculation should be equivalent.

We can further relate packed columns to tray columns by calculating the Height Equivalent of
a Theoretical Plate or HEPT, which is the height of packing of a packed column which corresponds
to one equilibrium stage on a tray column. HEPT can be calculated by the following.

HEPT =
total height of packing

number of theoretical stages
(3.18)
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Chapter Review : Non-Discrete Equilibrium Stages

In this chapter, we learned about packed columns, a unit operation without discrete equilibrium
stages. As such, novel analysis methods must be applied, mainly transfer unit analysis, which is
derived from gas-film theory.

Packed Column PFD

F
z

L̄V̄

V

Reboiler
B
xB

L

D
xD

Packed Column Assumptions

1. No Reactions

2. Steady-State and Continuous

3. Constant Pressure

4. Equimolar Counterdiffusion

Equations

1. NA = ky(yb − yi)

2. he =
V

KyaAc

∫ yout,e

yin,e

dyA
|y∗ − y|

3. he =
L

KxaAc

∫ xin,e

xout,e

dxA

|x− x∗|

4. hs =
V̄

KyaAc

∫ yout,e

yin,e

dyA
|y∗ − y|

5. hs =
L̄

KxaAc

∫ xin,e

xout,e

dxA

|x− x∗|

6. he = (HTU)OL(NTU)OL

7. HEPT =
total height of packing

number of theoretical stages

Differential Height of a Column

To preform transfer unit analysis, we must
integrate the concentrations of the more volatile
component at different differential heights of the
column.

F

z

V

L

D
xD

dz

Properties

• Property Exploited: Volatility

• Driving Force: Mass Transfer

• Separation: Vapour/Liquid

Key Points

• Flux can be calculated in any area and the
direction must be defined.

• The units of flux are quantity per area
times time

• x∗ and y∗ is in equilibrium with the bulk

• Packing is chosen to be cost-efficient and
non-reactive

• When calculating column height, do not
mix overall with individual, nor liquid ba-
sis with vapour basis

1. Example of Flux 2-5. Overall height calculations 6. HTU/NTU form 7. HEPT
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Chapter 4
Extraction and Absorption

Although we have spent our time up until now analysing distillation, there are many more types
of separation processes, all of which are guided by the same general principles. We will take this
time now to understand two new processes, extraction and absorption, with the goal of laying the
groundwork for understanding any and all separation processes.

Liquid-Liquid Extraction

Liquid-Liquid Extraction is a separation process wherein a solute is dissolved out of a feed stream
via a solvent. While still a process dependant on equilibrium, the equilibrium present is solubility-
based equilibrium, rather than VLE. Similar to tray columns, extraction units have discrete trays
with discrete equilibrium stages.

Quick Facts.

− Property Exploited: Solubility

− Driving Force: Solubility-Based Equilibrium

− Separation: Liquid/Liquid

The feed, referred to as the diluent or raffinate, contains some dissolved component called the
solute. Within the unit, the diluent comes in contact with the solvent, or extract stream. Since the
solvent is chosen such that the solute is more soluble in the solvent than in the diluent, the solute is
transferred from the diluent to the solvent. The result of this process is that the diluent is purified
of the solute. It may be helpful to see this in terms of a PFD
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Figure 4.1 PFD of Liquid-Liquid Extraction

It is important to note that although the extract and raffinate streams are both liquids, they
are treated as two distinct phases for analysis. For this context, we denote the composition of the
solute in the raffinate as x and the composition of the solute in the extract as y. Note also that the
raffinate and extract streams oppose each other. This is called a counter-current system. Although
it is possible and sometimes necessary to construct a co-current system, where both raffinate and
extract streams enter the and leave the same side of the unit, this is far less efficient.

The assumptions for an extraction unit are as follows:

• Isothermal and Isobaric

• No Reaction

• Heat of Mixing is Negligible

• Diluent and Solvent are Totally Immiscible

• System is Dilute

Note that if the system were not dilute, the transfer of the solute from diluent to solvent would
change the flowrates. Also note that if the diluent and solvent could mix, the system would not be
able to separate anything. Just as in distillation, it is necessary to assume that the flowrates of the
raffinate and extract from each tray are equal. That is to say R and E are constant.

Drawing a mass balance around any tray j and the top of the column, the following operating
can be derived. This derivation will be left as an exercise to the reader.

y =
R

E
x+

(
yn+1 −

R

E
xN

)
(4.1)

Given the standard interpretation of an operating line as the points leaving or entering one side of
a tray, it should follow that the points (x0, y1) and (xN , yN+1) will always fall on the operating line.
The former represents the point of least concentration in both streams, and the latter represents
the point of most concentration in both streams. Note that the y values would be swapped between
the points if this were a co-current system.

41



McCabe-Thiele Analysis: Extraction

McCabe-Thiele Analysis for an extraction unit is quite similar to all previous McCabe-Thiele
procedures. Unlike in vapour-liquid systems, equilibrium information for solubility-based systems
is often linear and given by the distribution ratio Kd, which is defined as

Kd =
yA
xA

(4.2)

The following is an example McCabe-Thiele plot for an extraction system, where Kd = 1/31
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Figure 4.2: McCabe-Thiele Analysis

Notice how stage 1, the bottom of the unit, is where the compositions are the greatest. This
should make sense with our understanding of a counter-current extraction operation. The y-axis
scale here is minuscule. Since the driving force is solubility based equilibrium, it is necessary for the
difference in concentration between the raffinate and extract streams to be large. Similar to how
a packed column will not distil if the concentration gradient is small, an extraction unit is rather
useless without a near-pure solvent.

Absorption

Absorption is a separation process quite similar to extraction, however with one key difference:
the phase of the feed. In an absorption system, a vapour carrier gas is purified of the solute by
being passed through a liquid solvent. The solute dissolves out of the gas and into the solvent. Just
like extraction this is an equilibrium stage process with discrete stages.

Quick Facts.

− Property Exploited: Solubility

− Driving Force: Solubility-Based Equilibrium

− Separation: Liquid/Liquid
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As both extraction and absorption operate quite similarly, the PFDs for both operations are
analogous.

VN+1

yN+1

y1

V1

LN

xN

x0

L0

tray j

Lj−1

xj−1

Lj

xj

Vj

yj

Vj+1

yj+1

Figure 4.3 PFD of Total Flowrate Absorption

Importantly, tray N is now the tray at the bottom of the unit, rather than at the top as in
extraction. Co-current absorption systems do exist, however, due to inefficiency, they are rarely
considered.

The assumptions for an extraction unit are as follows:

• Isothermal and Isobaric

• No Reaction

• Steady State and Continuous

• Carrier Gas is Insoluble

• Solvent is Nonvolatile

• System is Dilute

These last three assumptions enable us to assume that the liquid and gas flow throughout the
unit are constant. If the carrier gas could dissolve in the solvent, the operation would essentially
break, and if the solvent was volatile, some of it would vaporize into the carrier gas.

By drawing a mass balance around a single tray and the top of the column, we can derive the
operating line, which, once again, will be left as an exercise to the reader.

y =
L

V
x+

(
y1 −

L

V
x0

)
(4.3)

Carrier Basis

Can we always consider the system to be dilute? The carrier gas has the potential to be saturated
with a significant amount of solute. In this case, we can no longer ignore the mass transfer of solute
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from the carrier gas to the extract stream. For the threshold between a dilute and non-dilute
system, we have the following heuristic

y0 ≤ 0.05

That the feed is less than or equal to 5% solute. If this is not the case, we need to develop a new
basis for understanding our process.

Non-dilute systems are near impossible to analyse via the total flowrate basis which we have
been using thus far because the total flowrate from each tray is no longer constant. This results in
a piecewise linear operating line, which is not useful for McCabe-Thiele analysis. We can, however,
solve this problem by understanding what is constant in this system.

The flowrate of the carrier gas itself, agnostic to the solute diluted within, does not change
throughout the process. Neither does the flowrate of the solvent, if we ignore the solute which it
dissolves. This understanding of a process is called t carrier flowrate basis, and will enable us to
wield the power of McCabe-Thiele analysis for non-dilute systems.

The PFD of an Absorption unit can be expressed via the carrier flowrate basis.

G
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G
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XN

x0

S

tray j
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xj−1

Lj

xj

Vj

yj

Vj+1

yj+1

Figure 4.4 PFD of Carrier Flowrate Absorption

Here, G represents the flowrate of the carrier gas, and S represents the flowrate of the solvent.
We can define Fsolute to be the flowrate of the solute. While G and S are constant throughout the
trays, Fsolute varies from tray to tray.

What are X and Y ? First, it is important to understand exactly what x signifies. If a stream has
composition x = 0.2, that means that 20% of the total liquid stream is comprised of the component
in question. We call this the component fraction, and importantly, it is taken with respect to the
total stream. Now consider X, the component ratio.

Definition. The component ratio is the ratio of the amount of component in the stream and the
amount of pure carrier or solvent in the stream

We can calculate X and Y by the following

X =
x

1− x
(4.4)

Y =
y

1− y
(4.5)
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This relationship is true because if x represents the fraction of solute 1−x represents the fraction
of solvent, both when compared to the total stream.

Using this PFD and the componant ratios, we can derive an operating line similar to that for
a dilute system. This operating will be linear for a non-dilute system, making McCabe-Thiele
analysis possible.

Y =
S

G
X +

(
Y1 −

S

G
X0

)
(4.6)

McCabe-Thiele Analysis: Absorption

Equilibrium information for an absorption system is frequently derived from Henry’s law

y =
H

Ptotal
x (4.7)

where y and x are the component fraction of the solute in vapour and liquid phase respectively,
Ptotal is the total pressure of the system, and H is the Henry’s Law Constant for the system.
Raoult’s Law 1.5 can also be used as a thermodynamic model for equilibrium in absorption. For
dilute systems, it is preferred to use Henry’s Law, and for concentrated systems, it is more accurate
to use Raoult’s Law.

McCabe-Thiele analysis itself will look slightly different for absorption, although the methodol-
ogy is the same, because in this case, the component in question is flowing from vapour to liquid,
as opposed to in distillation, where the more volatile component flows from liquid to vapour.
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Figure 4.5: McCabe-Thiele Analysis

The operating line is now above the equilibrium line, and the entire process is done the same
as before, but now reflected over the equilibrium line. Also note that the largest concentration is
represented by the largest stage, and the stages are numbered from left to right, as opposed to from
right to left. In order to use the information gained by McCabe-Thiele analysis here, it becomes
necessary to convert back from a carrier basis for a concentrated system.
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Kresmer Equations

We have spent a significant amount of time deriving and performing McCabe-Thiele analysis.
It is only fitting that we end with an alternative. McCabe-Thiele analysis can be tedious, time
consuming, and inefficient, all of which can be avoided with the Kresmer Equations.

To begin, for dilute systems, consider the case of linear equilibrium, where the equilibrium line
is a linear equation. If this is true, and important observation can be made about the relationship
between the different McCabe-Thiele stairs one must draw to calculate the ideal number of stages.

This relationship is best observed when the operating line is parallel to the equilibrium line
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Figure 4.6: Parallel Lines

Notice how ∆x and ∆y are constant? For any linear operating and equilibrium lines, we can
relate the length and height of each stair to calculate the number of ideal stages algebraically. This
statement can be expressed as the equation

(y1 − yN+1) = (∆y) ·N

where (y1 − yN+1) is the total change in y throughout the process. The same relationship holds
for the change in x. Although this relationship is only true when the lines are parallel, ie. ∆y is
constant, an analogous relationship can be defined for all linear operating and equilibrium lines.

First we define the extraction factor to be

R

mE

where m is the slope of the equilibrium line. If

R

mE
= 1

we know that these two lines are parallel. We can also define an absorption factor for dilute
absorptions

L

mV
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From these relationships the Kresmer equations can be derived. In the case of parallel lines we get

N =
yN+1 − y1

y1 − (R/E)x0 − b
(4.8)

N =
yN+1 − y1

y1 − (L/V )x0 − b
(4.9)

Where b is the y-intercept of the operating line. In the case of non-parallel lines we get

N =

ln

[(
1− mE

R

)(
yN+1 − y∗1
y1 − y∗1

)
+

(
mE

R

)]
ln

[
R

mE

] (4.10)

N =

ln

[(
1− mV

L

)(
yN+1 − y∗1
y1 − y∗1

)
+

(
mV

L

)]
ln

[
L

mV

] (4.11)

With these equations we are able to calculate the number of ideal stages algebraically so long
as the equilibrium line is linear and the system is dilute.
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Chapter Review : Extraction and Absorption

In this chapter, we introduced two new separation processes, Extraction and Absorption, which
operate from a new type of equilibrium, solubility. We then learned how to analyse a non-dilute
system, finally discovering an algebreic way to calculate the number of ideal stages via the Kresmer
equations.

Extraction PFD

R0

x0

xN

RN

E1

y1

yN+1

EN+1

tray j

Ej+1

yj+1

Ej

yj

Rj

xj

Rj−1

xj−1

Extraction Assumptions

1. Isothermal and Isobaric

2. No Reaction

3. Heat of Mixing is Negligible

4. Diluent and Solvent are Totally Immiscible

5. System is Dilute

Key Points

• The Kresmer Equations can be used when
equilibrium is linear and the system is di-
lute

• Carrier flowrate basis is used when system
is concentrated

• The liquid raffinate and extract streams
are distinct phases in extraction

Equations

1. y =
R

E
x+

(
yn+1 −

R

E
xN

)
2. Kd =

yA
xA

3. y =
L

V
x+

(
y1 −

L

V
x0

)
4. y0 ≤ 0.05

5. X =
x

1− x

6. Y =
y

1− y

7. Y =
S

G
X +

(
Y1 −

S

G
X0

)
8. y =

H

Ptotal
x

Absorption Total Flowrate Basis PFD

VN+1

yN+1

y1

V1

LN

xN

x0

L0

tray j

Lj−1

xj−1

Lj

xj

Vj

yj

Vj+1

yj+1

1. Extraction Operating line 2. Distribution Ratio 3. Absorption Operating Line 4. Concentrated
System Threshold 5-6. Componant Ratio 7. Absorption Carrier Operating Line 8. Henry’s Law
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Absorption Carrier Basis PFD

G

YN+1

Y1

G

S

XN

x0

S

tray j

Lj−1

xj−1

Lj

xj

Vj

yj

Vj+1

yj+1

Properties

• Property Exploited: Solubility

• Driving Force: Solubility-Based Equilib-
rium

• Absorption Separation: Gas-Liquid

• Enriching Separation: Liquid-Liquid

Kresmer Equations

• N =
yN+1 − y1

y1 − (R/E)x0 − b

• N =
yN+1 − y1

y1 − (L/V )x0 − b

• N =

ln

[(
1− mE

R

)(
yN+1 − y∗1
y1 − y∗1

)
+

(
mE

R

)]
ln

[
R

mE

]

• N =

ln

[(
1− mV

L

)(
yN+1 − y∗1
y1 − y∗1

)
+

(
mV

L

)]
ln

[
L

mV

]

McCabe-Thiele Extraction
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McCabe-Thiele Absorption
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McCabe-Thiele Analysis
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Conclusion

I have given my best attempt at explaining every concept, every lesson, every equation, and
every graph contained within CHEG 302, Separation Processes. This project has been the product
of hours, so many long days and long nights. This might be the longest document I have ever
produced. Of this I am proud.

I hope this has been useful, I hope this has been well. I hope my meticulous diagrams are
captivating, I hope my painfully typeset equations are beautiful. I hope this is what I wanted it to
be. Du Bellay returned from Rome, returning to his paradise angevine. And now, I have completed
CHEG 302.

I write this for my Muse. Not that they would bother to tolerate all these pages, nor that they
would care for flowrates and carrier bases, but that they know I did it. That I could do it. With
that passion, this I have written, this I have finished, this I have loved.

∼ Sofi
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Appendix A: Proofs and Derivations

A.1. Boilup Stripping Operating Line

This is a proof of Equation 2.5. Given the following,

RB =
V̄

B
(A.1)

yk =
L̄

V̄
xk−1 −

B

V̄
xB (A.2)

L̄ = V̄ +B (A.3)

We can substitute A.3 into A.2

yk =
V̄ +B

V̄
xk−1 −

B

V̄
xB

Then, the right side of the equation can be multiplied by

1/B
1/B

Which yields

yk =
V̄/B + 1

V̄/B
xk−1 −

1

V̄/B
xB

Substituting for A.1, we get

yk =
RB + 1

RB
xk−1 −

1

RB
xB (2.5)

A.2. Reflux Enriching Operating Line

This is a proof of Equation 2.10. Given the following

R =
L

D
(A.4)

yj =
L

V
xj−1 +

D

V
xD (A.5)

V = L+D (A.6)

We can substitute A.6 into A.5

yj =
L

L+D
xj−1 +

D

L+D
xD
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Then, the right side of the equation can be multiplied by

1/D
1/D

Which yields

yj =
L/D

L/D + 1
xj−1 +

D

L/D +D
xD

Substituting for A.4, we get

yj =
R

R+ 1
xj−1 +

1

R+ 1
xD (2.10)

A.3. Derivation of the q-line

This is a proof of Equation 2.19. Given the following mass balances for a tray column

V̄ y + L̄x−BxB (A.7)

V y = Lx+DxD (A.8)

We can subtract A.8 from A.7 to get

V̄ y − V y = L̄x− Lx−BxB −DxD

And can be rearranged as

y
(
V̄ − V

)
=
(
L̄− L

)
x− (BxB +DxD)

Dividing both sides by V̄ − V , we get

y =
L̄− L

V̄ − V
x−

BxB +DxD

V̄ − V

Then we can multiply the right side by F/F

y =

(
F

F
· L̄− L

V̄ − V

)
x−

(
F

F
·
BxB +DxD

V̄ − V

)
Which can be rearranged as

y =

(
L̄− L

F
· F

V̄ − V

)
x−

(
F

V̄ − V
·
BxB +DxD

F

)
(A.9)

We can now leverage the following three equations

q =
L̄− L

F
(A.10)

1− q =
V − V̄

F
(A.11)

Fz = BxB +DxD (A.12)

Noting that A.12 can be rearranged as

z =
BxB +DxD

F
(A.13)
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Now, substituting A.10, A.11, and A.13 into A.9, we get

y =

(
q · −1

1− q

)
x−

(
−1

1− q
· z

)

Which simplifes to

y =
q

q − 1
+

z

1− q
(2.19)

A.4. Transfer Unit Analysis Equation

This is a proof of Equation 3.10. Given the flux equation

NA = ky(yi − y) (A.14)

We can multiply both sides of the expression by aAcdz which yields

NAaAcdz = ky(yi − y)aAcdz (A.15)

But, since
NAaAcdz = V dyA (A.16)

We can combine A.15 and A.16
ky(yi − y)aAcdz = V dyA

And rearranging for dz we get

dz =
V dyA

ky(yi − y)aAc

Setting up an integral from the bottom to the top of this column section we get∫ he

0

dz =
V

kyaAc

∫ yout,e

yin,e

dyA
(yi − y)

And integrating the left side we get

he =
V

kyaAc

∫ yout,e

yin,e

dyA
(yi − y)

(3.10)
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